

ENVIRONMENTAL SYSTEMS AND SOCIETIES STANDARD LEVEL PAPER 1

Candidate session number								

8

Thursday 6 November 2014 (morning)

1 hour

	Examination code							
8	1	4	_	6	3	0	1	

Examination code

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [45 marks].

(a)	(i)	State one type of solid domestic waste management strategy.	1
	()		
	(ii)	Outline one advantage and one disadvantage of the strategy named in 1(a)(i).	
	Ad	lvantage:	
	Di	sadvantage:	

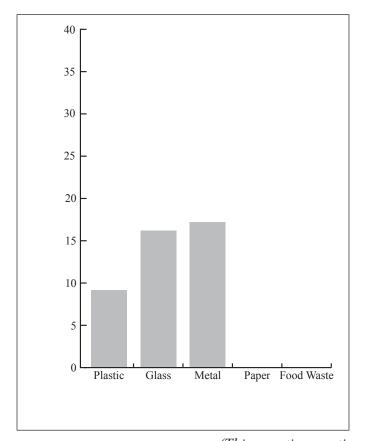
https://xtremepape.rs/

(Question 1 continued)

The table shows solid domestic waste data for the state of Victoria, Australia in 2006–2007.

Waste type	Tonnes ('000s)	Proportion of total mass (%)
Plastic	162	9%
Glass	284	16%
Metal	310	17%
Paper	396	
Food Waste	648	
Total	1800	

[Source: adapted from table 5, page 9, National Waste Overview 2009, EPHC Reproduced with permission of the Natural Environment Protection Council Secretariat, Canberra, Australia.]


(b) (i) From the data, calculate the proportion of paper **and** of food waste as a percentage of the total.

Enter these **two** values in the table above.

[1]

(ii) Complete the following bar chart by using the data calculated in (b)(i). Label the chart correctly.

[2]

(This question continues on the following page)

Turn over

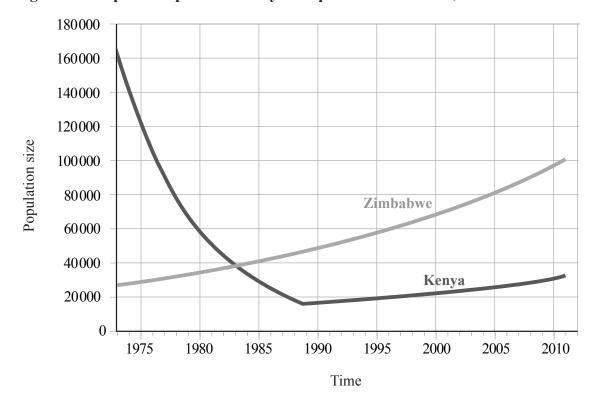
(Question 1 continued)

(c)

(1)	Define the term carrying capacity.	[1]
(ii)	Outline why it is difficult to measure carrying capacity for a human population.	[2]

There is a global ban on the trade of ivory obtained from elephant tusks. However, poachers in some African countries kill elephants and trade ivory illegally.					
(a)	(i)	State the type of natural capital of which ivory is an example.	[1]		
	(ii)	Identify two factors that have given the African elephant Red List status.	[1]		
(b)		phants eat a variety of vegetation: grasses, shrubs, leaves and small tree seedlings. cribe the impact on a grassland ecosystem of the main large herbivore being removed.	[2]		

(This question continues on the following page)


Turn over

2.

(Question 2 continued)

(c)	Using Figure 1 below, calculate the annual rate of population increase for elephants in Zimbabwe from 1985 to 2005.	[1]

Figure 1 Elephant Population: Kenya compared to Zimbabwe, 1973 – 2011

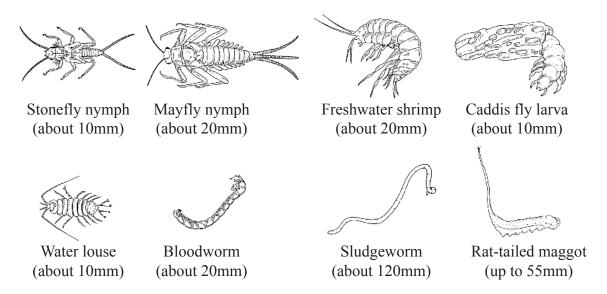
[Source: http://mjperry.blogspot.co.uk/2011/06/how-to-save-elephants-shoot-them.html. ©Professor Mark J. Perry. Used with permission.]

(This question continues on the following page)

https://xtremepape.rs/

(Question 2 continued)

(d)	The population of elephants is growing rapidly in countries such as Zimbabwe. This may lead to conservation issues.						
	Suggest two strategies for managing the population of elephants.	[2]					



[3]

3. Figure 2 below shows eight freshwater organisms.

Figure 2

(a)

[Source: Used with the permission of the Nuffield Foundation and the Society of Biology]

Construct a simple identification key for these eight organisms.

1		

(Question 3 continued)

(b) The table shows data from sampling two streams: A and B. Calculate the Simpson's Diversity Index for Stream B.

$$D = \frac{N(N-1)}{n(n-1)}$$

Y011	must	show	vour	working	

[2]

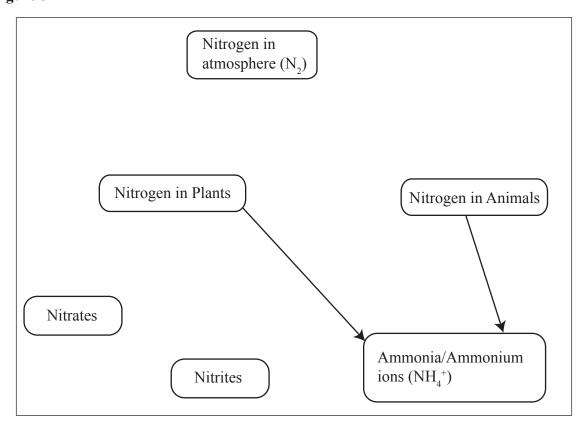
Species	Stream A	Stream B
Mayfly nymph	4	0
Caddis fly larva	30	0
Freshwater shrimp	70	1
Water Louse	34	4
Bloodworm	10	45
Sludgeworm	2	100
Simpson's Diversity Index	3.23	

(Question 3 continued)

(i)	Define the term <i>pollution</i> .	[1]
(ii)	Describe two differences between streams A and B.	[2]
(iii)	State, giving a reason, which stream you think is more polluted.	[1]

https://xtremepape.rs/

a)		ne the term <i>biome</i> .	[1]
b)	Desc	cribe how biomass data from a named biome could be collected.	[3]
c)	A gr	oup of researchers want to investigate succession in an ecosystem. State two factors that the researchers would need to consider when collecting their data.	[2]
c)			[2]
c)			[2]



Turn over

4.

5. Figure 3 shows an incomplete model for the nitrogen cycle.

Figure 3

(a)	Label the diagram	above to com	plete the proces	sses and flows in t	he nitrogen cy	cle. /	[3]	
١.	,			- p - o o o o o o o o o o o o o o o o o				- 1	

(1)	D' ' ' 1 1 '	, C 1		• 41	·, 1	[2]
ı'n١	Distinguish between a	trangter and a	a transtormation	in the n	itrogen cycle	[2]
(0)	Distinguish between a	i il alistot alla a	a mansiorinanor	1 111 1110 11	inogon cyclo.	141

(Question 5 continued)

•	 	٠	 •	 	 ٠	 •	•	 •		•	•	•	•	•	•	•	 	•	•	 •	-	 •	 	•	•	 ٠	•	 •	 •		•	•			•
	 			 					 												-		 				-		 -					 	

The cartoon below is a comment on the strategic importance of each country securing its own **6.** water supply.

Figure 4

IN THE FUTURE, WARS WILL BE FOUGHT OVER WATER

[Source: ©Chris Madden. Used with permission of CartoonStock.com.]

(a)	Suggest one reason why "in the future, wars will be fought over water".	[2]
(b)	Suggest one way governments can encourage the reduction of domestic water use.	[1]

(Question 6 continued)

	J	Υı	e	uı	C	ι	Ш	J١	N	Č	ı	ıc	-	1.	11	1()() (71.	Ιl	11	C	•	1 1	10	u	Č	11	1	(5(٥)(C	C .	11	u	10	C	1	11	1 }	31	.11	. (u.	11	10		L.	Ш	1	u	10	51.	I	V	10	Ξ'	W	/ 2	•	a	υ	U	ıı	11	. (u	a	11	.13	5.				
		•		٠	•	•								•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•				•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	
		-		٠	٠	•	•							•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•				•		•	•	•	•			•	•	•	•	•	•			•	•	•	•	•		•	•	•	•	•	
		•		•	•	•									•	•		•			•		•		٠	•				•	•							•	٠							•		•					•	•	•			•		•			٠			•		•					•		•		
		-		•	•	•									•	•	•	•	•	•	•	•	•	•		•			•	•	•				•	•	•	•		•	•	•	•							•		•	•	•	•			•		•	•					•	•		•			•	•		•	•	
															•																																											•								•											
															•																																																														

Please do not write on this page.

Answers written on this page will not be marked.

16FP16